Six Sigma

Breakthrough Strategy or Your Worse Nightmare?

Jeffrey T. Gotro, Ph.D.
Director of Research & Development
Ablestik Laboratories
Agenda

- What is Six Sigma?
- What are the challenges?
- What are the rewards?
- Summary and Questions
Six Sigma has many meanings

- A Symbol \(\sigma \)
- A Measure
- A Benchmark or Goal
- A Method
Six Sigma: A Symbol

- σ is a Statistical Symbol for Standard Deviation
- Standard Deviation is a Measure of Variability
The “Sigma Level” of a process can be used to express its capability:
- How well it performs with respect to customer requirements.

Defects per million opportunities
Doing the math

6 Sigma = 3.4 defects per million
5 Sigma = 230 defects per million
4 Sigma = 6,210 defects per million
3 Sigma = 66,800 defects per million
2 Sigma = 308,000 defects per million
1 Sigma = 690,000 defects per million
Some Examples to Illustrate Typical Defect Rates

Defects per Million Opportunities

SIGMA

Average Company

Best in Class

IRS - Tax Advice (phone-in)

(66,888 ppm)

(6,210 ppm)

(66,800 ppm)

(230 ppm)

(3.4 ppm)

(0.43 ppm)

Domestic Airline Flight Fatality Rate

(with ±1.5 Sigma Shift)

Purchased Material
Lot Reject Rate
Air Line Baggage Handling

Restaurant Bills
Doctor Prescription Writing
Payroll Processing
Order Write-up
Journal Vouchers
Wire Transfers

Defects per Million Opportunities

100K
10K
1K
100
10
1
2 3 4 5 6 7
SIGMA

SIGMA (with ±1.5 Sigma Shift)
Six Sigma: A Benchmark or Goal

- The specific value of 6 Sigma (as opposed to 4 or 5 Sigma) is a benchmark for process excellence.
- Adopted by leading organizations as a goal for process capability.
- Delivering nearly defect-free products and services
- Focus on variation reduction
Six Sigma: A Method

- A well defined process and toolkit used for:
 - Product/Service Design
 - Product & Process Improvement
DMAIC Approach

Chronic Waste

Sporadic Spike (Special Cause)

Common Cause Variation

Chronic Waste
DMAIC Approach

Define
Select customer-focused problem, document business impact, determine project deliverables, complete project charter, form multidisciplinary team

Measure
Develop factual understanding of current process, locate current problem sources, establish “as-is” process baseline, measure baseline process capability

Analyze
Identify potential defect root causes and sources of variation, investigate using experiments and statistics, verify root causes

Improve
Use design of experiments to develop solutions. Eliminate the verified root cause(s), or reduce sources of variation, demonstrate with data

Control
Implement methods to hold the gains such as SOP’s and statistical process controls (SPC).
Six Sigma DMAIC Tools

Define
- Project Scope
- Project Charter
- Business Impact
- Voice of the Customer (VOC)
- Affinity Diagram
- Kano Model
- CTQ Tree diagram

Measure
- Process Map
- Data Collection
- Control Charts
- Pareto Charts
- Prioritization Matrix
- Measurement System Analysis
- Process Capability
- Yields (RTY)

Analyze
- Multivari Analysis
- Cause & Effect Matrix
- FMEA
- Hypothesis testing
- ANOVA
- Noise Variables
- Scatter plots
- Design of Experiments

Improve
- Brainstorming & Creativity tools
- Design of Experiments (DOE)
- Full Factorial
- Fractional Factorial
- Response Surface
- Pilot Trials
- Implementation Plan

Control
- Statistical Process Control (SPC)
- Standard Operating procedures (SOP)
- Data Collection & sampling plans
- Control Plans
- Measurement Systems Analysis (recheck)
- Project summary & lessons learned
All Work is a Process

Supplier → Process

Requirements → Inputs → Value-added tasks → Output → Customer

Requirements → Feedback

S. I. P. O. C.
What is a process?

Controllable Inputs (X’s) → Process → Key Process Outputs (Y’s)

Noise Inputs

$Y = f(X)$
Visualizing Process Capability

C_p = 1
Visualizing Process Capability

C_p = 2
Visualizing Process Capability

Change the process to fit in the original specification window
Process Drift

$C_p = 1.33$

$C_{pk} = 1.33$

Process is Centered Between the Specification Limits
Process Drift

$C_p = 1.33$

$C_{pk} = 0.83$

Process has Drifted Between the Specification Limits
Process Capability Summary

Capable Process

This process is not capable
Unstable Process

- Mean shifts present
- Excess variation (σ changes)
- Special causes of variation are present,
- Process output is not stable over time and is not predictable
Stable process:
• Variation reduced (lower σ)
• Process is centered in spec window
• Mean shifts reduced
• Only common cause variation is present
• Process output is stable/predictable
• The process is termed “in statistical control.”
History of Six Sigma

- Originated at Motorola in the early 80’s
- Doesn’t use “Quality” in the name
- Uses a modification of the Deming Plan-Do-Check-Act (PDCA) cycle
- Adopted widely in the 90’s by major corporations including AlliedSignal (now Honeywell), GE, Kodak, and a growing list of small, medium, and large companies.
Training for Six Sigma

- **Executives**
 - 8 hour Six Sigma overview and implementation roadmap development.

- **Champion**
 - 30 hour course, overview of DMAIC, Tools overview
 - Focus on developing project selection skills

- **Black Belt**
 - 160 hours of classroom, total of four months to train
 - Required to have a project

- **Green Belt**
 - 30-80 hours depending on training philosophy
 - May or may not have to complete a project
Identifying Six Sigma Projects

Basic Project Criteria
• Problem in key business activity
• Large financial impact
• Can measure and quantify performance

Easy to Fix?

Quick Hit

Solution Available?

Other Initiative

Six Sigma Project

• Process focus
• Analyze Y = f(x)
• Reduce variation & defects
• Complex relationships
Project Focus

- Projects are chartered by Champions and business leaders
- Led by Black Belts
- Assisted by Green Belts
- Each experienced Black Belt can typically handle between 4-6 projects per year
- Typical financial impact is approximately $175,000 per project
- Experienced Black Belt can generate about $1M in savings per year
Why adopt Six Sigma?

- Concept has been around for 16 years, proven track record at big companies.
- Has shown the most endurance and return on investment of any improvement initiative.
- Starting to be implemented in small and medium-sized corporations.
- Provides a comprehensive set of philosophies, tools, methods, and fundamental concepts leading to quantifiable business results.
- Involves the entire organization; from CEO, CFO, Champions, Black Belts, Green Belts, and workers.
What are the Challenges?

- Takes careful preparation and a commitment to fundamental change efforts required.
- Training – key for all levels in the organization
- It is not a quick fix nor a “one-size-fits-all” approach.
- Statistical analysis is not generally part of the engineering discipline in most companies.
- Tendency to work on too many projects at once. Resource limitations are real!
- Need to manage expectations on payback time, typically takes 9-12 months from roll-out to start seeing quantifiable financial gains.
What are the Rewards

- Increased value to the customers and shareholders.
- Improved reliability and predictability of products and services.
- Significant reduction in defects.
- Institutionalization of a “process” mindset.
- Increased competitive advantage.
Some Results...

- Motorola – 10 years; $11 Billion Savings
- AlliedSignal - $1.5 Billion estimated savings
- General Electric – started efforts in 1995
 - 1998: $1.2 Billion less $450 Million in costs… net benefits = $750 Million
 - 1999 Annual Report: more than $2 Billion net benefits
 - 2001: 6,000 projects completed; $3 Billion in savings
Six Sigma Summary

- Disciplined & Systematic Approach
 - Process orientation, drive for variation reduction
 - Focus on quantitative methods and tools
 - Focus on control to hold the gains
 - Uses a new metric for defects (sigma, DPMO, ppm)

- Results oriented management leadership, using data-driven decision making

- Significant training & organizational learning
Six Sigma Summary

- Success happens “one project at a time”
- Good project selection leads to large financial impact
- Implementation is hard work, not magic. Expect bumps in the road, stay the course, results will happen
- Six Sigma is “A journey not a destination”
Questions?
Jeffrey Gotro, Ph.D.
Jtgotro@cox.net